
Robotics Project of the course

EDAP20: Intelligent Autonomous Systems

Robotics and Semantic Systems Group, Lund University

September 2021
Revision 1.1

1

Contents

1 Introduction 3
1.1 Getting you started: Robot Setup 4
1.2 The Big Picture . 5
1.3 Code Management . 6

2 Navigation + Reasoning 8
2.1 Navigation . 8

2.1.1 Steps . 8
2.2 The Reasoning Modules: The System’s Brain 9

3 Perception 11
3.1 Block Localization . 12

3.1.1 Integration . 13
3.2 The Depth Image . 13
3.3 Calibration . 14
3.4 Grasping the Block . 14
3.5 Table Detection . 14

4 Manipulation 15
4.1 Overall Task Description . 16
4.2 Going to a Camera Overview Pose 16

4.2.1 Integration . 16
4.3 Picking . 17

4.3.1 Integration . 17
4.4 Placing . 18

4.4.1 Integration . 18

2

1 Introduction

Imagine an autonomous robot that is supposed to fetch and bring parts, like
the care-o-bot bringing bread and butter from the fridge. In this project, we
will simplify the problem. You will program our mobile platform such that it is
able to fetch an object at some location A and bring it to some location B. The
objects will have to be picked and placed. The robot will have to know where
the locations are and how to get there. You will have to program the robot to
do this.

In detail, you will be working on our robot HERON. The Heron robot should
navigate in the LUCAS corridor (4th floor E-building) and collect small toy
blocks from some locations and then place/stack them at a goal location. The
map of the LUCAS corridor generated by the Heron robot in Gazebo is shown
in the Figure 1. The locations of the boxes and the goal platform demonstrated
in the Figure 1 are only tentative. Your respective TA will help you finalize
those locations.

Figure 1: The location of the blocks are shown on the platforms 1,2 and 3. The
yellow table shown in the image is the sample goal location where the robot has
to place/stack the objects.

To complete the task the robot will need

• a navigation module that tackles the problem of finding its way in the
environment without crushing into things.

• a manipulation module that allows the robot to pickup objects and place
or stack them on a table.

• a perception module to help the robot to see the object it should pick.

• a reasoning module to coordinate the first three modules to achieve the
goal.

With the help of our lectures and the ROS course you will be able to program
these modules.

But be aware: the modules must also function together to achieve the
fetch&bring task.

Each of the modules are not complicated but trying them out on a real robot
will provide some additional challenges, fun and experience.

3

You will work in teams of 15 students, 5 students for each of the first three
modules (navigation, manipulation, perception). To support the collaboration
between the groups and their modules, we provide for each module a ROS
API. Please talk to the TAs before extending the APIs. The reasoning module
shall be coordinated by the navigation group but must be realized through a
collaboration between all three groups.

Every group member is expected to contribute equally in the project.

1.1 Getting you started: Robot Setup

For this project you will use our robot Heron (see Fig 2), which has all the
necessary capabilities to accomplish the task. Heron is made up of these parts:

• Mobile Industrial Robots MIR200 - a mobile platform

• Universal Robots UR5e - a robot arm

• Intel Realsense D435 - An RGB-D camera with a resolution of 1920*1080
pixels for the RGB camera and an output depth resolution of 1280*720;
attached to the wrist of the arm. The minimum depth distance is 0.105
m.

• Schunk WSG-50 parallel gripper - a two finger gripper attached the UR

• RobotMind2 - Inside the casing, Heron has a powerful workstation that
can be used to run the ROS component needed to use the robot. We refer
to this workstation as RobotMind2.

• On board WiFi - Heron has it’s own WiFi setup that you will use in order
to connect everything through the ROS master process.

Installing the Setup:

You can find the heron workspace setup on the Gitlab server. You can follow
those instructions for an installation on a Linux computer, e.g., the computer
that you will use to control the robot.

Using the robot

Your respective TA will show you how to power on each of the components in
the Heron robot. When everything is powered on, you will connect to its on
board WiFi:
ssid: Heron Mobile WiFi 5G

password: herongogo

As soon as you’re connected to the WiFi, you’ll be able to use the MiR web
interface (your TA will show you), and you’ll be able to use ROS just like you

4

https://www.mobile-industrial-robots.com/en/solutions/robots/mir200/
https://www.universal-robots.com/products/ur5-robot/
https://www.intelrealsense.com/depth-camera-d435/
https://schunk.com/se_en/gripping-systems/category/gripping-systems/schunk-grippers/parallel-gripper/
https://coursegit.cs.lth.se/ias-course/heron/heron_workspace_setup

Figure 2: Heron in manual (joystick) driving mode with status blue color.

learned in ROS Basics in 5 Days.

You’ll also be able to connect to the RobotMind2 workstation inside Heron.
While it’s entirely possible to run all the ROS components on your own com-
puter, we highly recommend using RobotMind2 for the roscore and bringup

(more on these later). Connecting to RobotMind2 is as simple as:

1 $ ssh ias_student@192 .168.0.8

You will be asked to enter ias student’s password, which is ias2021.

If you’ve never used ssh before, you may wonder what just happened. You’ve
logged in remotely to the RobotMind2 computer, as the user ias student, and
you’re given a terminal session on RobotMind2. In this terminal session, you
can type your commands just like you would on you own computer.

1.2 The Big Picture

The overall structure of the project is depicted in Figure 3. The manipulation
and perception teams are providing information and the capabilities to the nav-
igation + integration team. The navigation team is then responsible for the
overall integration of the project. For instance, if the task is to collect blocks,
then it is the responsibility of the navigation team to call the required action
servers from the various modules.

5

Perception Group
Action Servers:

Block-localization
Free-space Localisation

Manipulation Group
Action Servers:

Pick_action
Place_action

Tower_building

Navigation Group
Navigate

Reasoning

Figure 3: Perception, manipulation and navigation actions are coordinated by
the Reasoning process. As indicated by the block color, the Navigation team
will coordinate the development of the Reasoning process, but through close
collaboration with the other two teams.

A proto-typical but over-simplified sequence of actions in a fetch and bring
task could be:

1. Trigger drive to location 1

2. Trigger perception

3. Trigger picking

4. Trigger drive to goal location G

5. Trigger detection of free space

6. Trigger placing

It is over-simplified because in most situations, something will be going wrong,
and the reasoning block will not only have to trigger the actions but also show
some reasoning capabilities if something goes not according to expectation.

1.3 Code Management

You will find repositories on a Gitlab server hosted by the CS department. Here
you find:

6

1. all the necessary code to run the robot
https://coursegit.cs.lth.se/ias-course/heron

2. the message definitions for this course - ias msgs
https://coursegit.cs.lth.se/ias-course/heron/ias_msgs

3. repositories for the team set A and B
https://coursegit.cs.lth.se/ias-course/groups

You will not need to push to the repositories of 1) and 2), but feel free to send
merge requests if you find something that you want to see improved.

The code of your individual team will be stored in your team’s repository in
3). This is especially important for the integration of the project, but also for
TAs to be able to help you. You will need to be able to push and pull from this
repository. If you are not familiar with Git and Gitlab this is the time to learn
about these important tools for software engineering. An introduction on how
to commit code in Git can be found here.

We can only add you to the respective groups in the Gitlab server after you
signed in by using the Lund University credentials at least once. You can do
this by going to the server and clicking at ”Lund University Login” button at
the lower-right corner of the login page. Let us know when you completed this.

7

https://coursegit.cs.lth.se/ias-course/heron
https://coursegit.cs.lth.se/ias-course/heron/ias_msgs
https://coursegit.cs.lth.se/ias-course/groups
https://medium.com/swlh/introduction-to-git-d5e17392bdd1
https://coursegit.cs.lth.se/

2 Navigation + Reasoning

There are two main goals:

• Equip the robot with the capability of collision free navigation in the
environment.

• Provide the robot with a brain, i.e., the reasoning capability that coordi-
nates all the modules to achieve the goal of this project.

2.1 Navigation

In the navigation module, you would use the knowledge gained in the course
ROS Navigation in 5 days. The Navigation Stack is a readily available col-
lection of programs that allows the robot to move in an environment while
avoiding obstacles. It takes odometry and sensor data as input and sends
velocity commands as output to the mobile base. The Navigation Stack re-
quires ROS, tf transform tree and correct message types publishing sensor data
as pre-requisites.

The first thing a robot requires is a map. The map allows the robot to
localize itself and also provides it with location information of objects in an
environment. For this module, a map of 4th floor of the E-building will be
provided to you.

As you know, there three ways to communicate in ROS: topics, services and
actions.By far the most common way is to use topics. You can send direct motor
commands to the robot by publishing a motor command messages on the topic
/cmd vel. Generally, these messages are handled directly by the Navigation
Stack.

Once the Navigation Stack is set up the next step is to have a system in
place that tells the robot where to go and how to go there. This is done by
performing Path planning. Path planning basically takes as input the current
location of the robot and the location where the robot should go. As output it
gives the best and fastest path.

2.1.1 Steps

Necessary commands to get the robot up and running are. Shell 1:

1 $ roscore

This would start the roscore.
Shell 2:

1 $ roslaunch heron_robot base_bringup.launch sim:=true

Alternatively, if you want to work with the real robot run the following com-
mand:

1 $ roslaunch heron_robot base_bringup.launch sim:=false

8

The above command launches gazebo and spawns Heron in the 4th floor of E-
building environment Fig 1. You can use rviz to send the movement commands
to the robot. To do that, run in Shell 3:

1 $ rviz -d $(rospack find mir_navigation)/rviz/navigation.rviz

You can manually localize the robot by using the 2D Pose Estimate button
at the top: To estimate the pose you must click on the robot to set the initial
position and then drag the mouse into the viewing direction of the robot.

You can also send a goal to the robot in Rviz by using the 2D Nav Goal
button: Just select a goal point and drag the mouse in the direction you want
the robot to be facing at the goal location. This sends the goal location to the
path planner that then automatically finds a path for the robot to follow while
avoiding obstacles. You can see the robot moving in gazebo and rviz.

You can also send goal manually to the robot by publishing on topic

1 /move_base_simple/goal

This is the topic to which 2D Nav Goal button sends the goal vector. Before
sending goals directly please refer to actionlib or the tutorials on action servers
for more information. Basically, you have to start the action client ”move base”
which accepts the message type ”move base msgs.msg.MoveBaseAction”. You
can find a simple example script at send mir goal.py.

You can find the base pose ground truth of the robot using the following
topic

1 rostopic echo -n1 /base_pose_ground_truth

Please check the rostopic list: you will find many potentially useful topics
which may proof useful for your project.

2.2 The Reasoning Modules: The System’s Brain

The way you do it is by calling the necessary actions servers introduced by the
other modules whenever required. Please refer to Fig 3 for the big picture. You
also need to be aware of the individual integration specifications of the other
modules. Since the navigation team is also the integrating team, we are not
providing a dedicated API for navigation.

The simplest solution to program such a task is to simply run one skill after
another, similarly to normal desktop computer programs that execute one func-
tion after another. On robots, however, failures can easily happen: The robot
might not reach the drive-to location, the picking might fail, etc. If every com-
mand has a success probability of, let’s say 0.95, the overall success probability
for collecting the above three objects using the above 18 commands is as small
as 0.9518 ≈ 0.4. In the lecture on reasoning and knowledge representation, we
have provided you with some techniques on how to handle such situations sys-
tematically. Keywords are finite-state-machine, behaviour trees and planners.

Another aspect is the reliability of the different modules: Do they function
as expected? Are you sure the messages contain the information you expect
from a particular topic? It is important that definitions are agreed with the

9

http://wiki.ros.org/actionlib
https://git.cs.lth.se/robotlab/heron/heron_robot/-/blob/master/heron_robot/scripts/send_mir_goal.py

other teams. Also, it is very important to discuss what kind of functionalities a
module could ideally provide.

10

3 Perception

The perception module provides vision capabilities to the robot. It allows the
robot to find the location of the blocks for picking. This module will generally
only interact with the Manipulation module.

In the perception team you will create action servers to provide the necessary
capabilities of block localization. The Reasoning module will call these action
servers whenever needed.

If you want to use the camera with ROS code on HERON, execute the
following commands.

RobotMind2:

1 $ roscore &

2 $ roslaunch heron_robot heron_bringup.launch\

realsense_static_tf_publisher :=true sim:=false

This starts all components of the robot. Technically you could start only the
arm and the camera, but it is much more convenient to be able to move the
robot around. That way you can move the robot to e.g. a table with blocks,
and then execute your perception logic.

Since the entire robot is started, you will be able to see very many different
ros topics. The ones related to the camera start with /realsense. Specifically
you should focus on:

• /realsense/rgb/image raw

This topic will provide you with plain RGB images.

• /realsense/aligned depth to color/image raw

This topic will provide you with depth images that have been aligned to
match the RGB images.

If you want, you can visualize the entire robot, including the camera views by
running:
Shell 1:

1 $ roslaunch heron_robot rviz.launch config := heron

To run the camera in simulation, execute the following commands:
Shell 1:

1 $ roscore

Shell 2:

1 $ roslaunch heron_robot arm_bringup.launch \

2 realsense_static_tf_publisher :=true sim:=true

If you want to start working on perception before getting access to the real Heron
robot, by far the easiest way is to use the static image publisher that we provide.

It is entirely possible to run the perception module in simulation as described
above. However, due to its simplicity, we recommend the static image publisher

11

https://coursegit.cs.lth.se/ias-course/heron/static_image_publisher

instead.

static image publisher is a small package that simply publishes a static
RGB + Depth image in the correct topics. That way, you can launch the
static image publisher.py script according to the instructions in the repo,
and then program your perception logic just like you would if you were using
the real Heron robot.

The image being published by static image publisher was originally taken
from the real Heron robot in the Robotlab, so it is a very real test-case for you.
It also includes several blocks of different colors, so it should provide a good
basis for you to implement your block detection logic.

3.1 Block Localization

The primary goal of the Perception module is to detect a block and return its
pose in 3D space, so that the arm can move to the block and pick it up.

You will use the wrist camera of the arm to detect the blocks. This means
that the first thing the arms needs to do is to move into a configuration that
brings the blocks into the field of view (FOV) of the camera. This arm movement
will be handled by the manipulation group. Once a block is detected in the RGB
image, its location in the camera coordinate system needs to be determined using
the depth data. This location is then transformed to the arm’s coordinate frame
and returned as a result of the action.

ROS’ tf package provides the class tf.TransformListener, which is help-
ful when transforming a coordinate into a different frame. Look especially at
tf.Transformer.lookupTransform() and tf.TransformerRos.transformPose().
These functions are both available in the tf.TransformListener class.

The blocks used for this project look similar to Fig 4. There are several ways
you can detect a block. An easy approach to detect the block is to move the
camera above the table and let the camera look straight down onto the table.
You will easily be able to locate the block using color segmentation. Naturally
you may use any method you want, but color segmentation is most likely the
easiest.

Figure 4: Example blocks.

12

https://coursegit.cs.lth.se/ias-course/heron/static_image_publisher
http://docs.ros.org/en/melodic/api/tf/html/python/tf_python.html

3.1.1 Integration

The block localization runs as an action server following the conventions listed
below. Whenever a goal is sent to this action server, it would return the pose of
one or more blocks as a result of the action. You might want to consider how
the BlockLocalization action might react if there are multiple blocks visible
in the camera? Alternatively, it might also be OK to assume that only one
block will be visible at a time.

• Type: Simple Action Server

• Topic: /block localization

• Message type: ias msgs/BlockLocalization.action

1 ### goal definition

2 ---

3 ### result definition

4 geometry_msgs/PoseArray poses

5 ---

6 ### feedback

7 # can be used as an optional progress indicator

8 # with values between 0 and 100

9 int32[] progress

Listing 1: Definition of the BlockLocalization action. The goal can be empty
since a trigger suffices and the result is an array of possibly multiple poses.

3.2 The Depth Image

While the RGB image is nothing more than a plain-old-school RGB image, the
Depth image is different from what you might have seen before.

When you subscribe to the /realsense/aligned depth to color/image raw

topic (and run it through cv bridge), you’ll get an OpenCV image.

The first thing you might try is to run

1 cv2.imshow(’depth image’, depth_image)

2 cv2.waitKey (0)

in order to look at the image.
However, you’ll notice that visualizing the image with imshow() didn’t work

very well. So instead you try printing some information about it:

1 print depth_image.shape , depth_image.dtype

Here, you’ll see that the shape matches the size of the RGB image, so far so
good. But the data type returns uint16. What? Shouldn’t it be uint8?

So it turns out that the Depth image is made up of values from 0-65535, and
not 0-255 as you might expect. This is to accommodate a distance directly in
the image data.

13

Let’s finally get to what you need to know: Each pixel value in the Depth
image is the distance from the camera in millimeters, which means that a pixel
value of 548 indicates that something is 548mm (or 54.8cm, or 0.548m) away
from the camera.

The value 0 is special and means that the camera failed to detect a distance,
which usually means that the object there is either too close or too far away.

If you want to visualize the Depth image, you’ll have more luck with:

1 scale = 255.0 / np.max(depth_image)

2 depth_image_scaled = cv2.convertScaleAbs(depth_image ,

3 alpha=scale)

4 depth_image_colormap = cv2.applyColorMap(depth_image_scaled ,

5 cv2.COLORMAP_JET)

6 cv2.imshow(’depth image’, depth_image_colormap)

7 cv2.waitKey (0)

3.3 Calibration

Before you attempt to compute coordinates in the world frame you need to know
how to transform image pixel coordinates into physical distances. Immediately,
you may think that you need to perform a full camera calibration. However,
that is not necessary in this project, and some simple measurements will do!
Keyword: Orthographic Projection. Your TA will help you with this in the lab.

3.4 Grasping the Block

When running your code on the real Heron robot, you may find that you don’t
get an exact 3D position on the first try, especially when the block is closer to
the edge of the image. As such, it is wise to coordinate with the Manipulation
group to create a method that can move closer to the block in several steps (i.e.
in a loop).

Hint: the translation to 3D coordinates will generally be most exact when
the block is centered in the image.

Another hint: Remember the video from the class.

3.5 Table Detection

An optional extension to the perception module is a tabletop detector. At some
point, the Heron robot will have to put the block somewhere. While it is OK to
simply hard-code the arm position used when releasing the block, eager students
are welcome to extend the perception module by dynamically detecting a table
surface where the block can be placed.

14

4 Manipulation

Manipulation module equips the robot with the capability to manipulate blocks
in the environment by automatically generating arm movement sequences. The
simplest form of manipulation would be picking and placing the blocks on the
table. To be able to generate those movement sequences, we use motion plan-
ning. As in the ConstructSim, we will be using MoveIt.

As you know, MoveIt is a ready made set of packages and tools that allow
you to perform manipulation with ROS. MoveIt provides software and tools in
order to do Motion Planning, Manipulation, Perception, Kinematics, Collision
Checking, and Control. We have set up the launch files for Heron robot to
launch Rviz and Gazebo simulator.

You can run the launch file using the command as follows:
Shell 1 (First run the ros master):

1 $ roscore

Shell 2 (Launch the Heron Simulation):

1 $ roslaunch heron_robot heron_bringup.launch

To run the launch file on the real robot, you would run

1 $ roslaunch heron_robot heron_bringup.launch sim:=false

This command will start Rviz and the Gazebo window (containing the Heron
robot model). In Rviz, you can play with the robot by giving different goal
poses and then plan with the different motion algorithms (RRT*, PRM e.t.c.)
provided by the OMPL library as shown in Figure 5.

Figure 5: Using OMPL motion planning library to plan for a trajectory from
an initial pose to the goal pose and simulating the motion plan in Rviz.

15

CAUTION (While working on the real robot) :

• Remember that you should always have your hands on the big red
(STOP) button in case there is something in the way or anything unex-
pected happens.

• BEFORE you start moving the arm through the teaching pendant, set
the speed to 10

• If you are using Rviz to move the arm then there is a button on the
motion planning tab where you can reduce the speed.

• NEVER change the arm speed to a higher velocity.

You can use the following command to get the last joint state configuration.

1 $ rostopic echo -n1 /joint_states

Before you do anything, make sure you have done the ROS manipulation
course in 5 days.

4.1 Overall Task Description

With your manipulation team you will create action servers that should provide
the necessary capabilities of

1. going into a camera overview pose so that the camera can see the block
you want to pick

2. picking a block from a table

3. placing a block at a specified location.

This module will always be triggered by the Reasoning module.
An optional goal for this module is building a tower of blocks. This can

be done once all the blocks are collected at the specified rectangular space. The
”tower of blocks” is defined to have > 3 blocks stacked on top of each other.

4.2 Going to a Camera Overview Pose

The perception group needs the blocks on the table to be in the field of view of
the camera. Since the camera is mounted to the wrist of the arm, you need to
move the robot arm appropriately.

4.2.1 Integration

This capability should run as an action server with the topic name “/goto”.
The goal sent to the action server are the joint states for the camera lookout
pose. You need to call the MoveIt commander to plan for the motion.

• Type: Simple Action Server

16

• Topic: /goto

• Message type: ias msgs/GoTo.action

1 ### goal definition

2 float32 [] joint_states

3 ---

4 ### result definition

5 ---

6 ### feedback

7 # can be used as an optional progress indicator

8 # with values between 0 and 100

9 int32[] progress

Listing 2: The definition of GoTo.action.

4.3 Picking

The goal of this capability is to allow the robot to pick blocks from a table.
You will use the robotic gripper attached to UR5e arm to grasp or pick the

block on a table. This means that the arm needs to be moved into a configuration
that allows the gripper to pick the block. The gripper is a parallel gripper with
two parallel fingers that can be closed to pick the block. Once the gripper holds
the object you can move the arm to lift the object. Gripper can be opened or
closed with a single command.

Tor safety reasons, the robot can navigate only if the arm is in its home
position. Therefore, to be able to let the robot move to a new location, you
need to move the arm into its home position.

CAUTION: Be careful when moving the arm when attempting to pick: you
may break the fingers of the gripper if the gripper hits the table surface. Make
sure your hand is close to the red emergency button and ready to press it once
the robot arm moves.

4.3.1 Integration

Picking should run as an action server named “/pick”. The goal sent to the
action server is the 3D location of a block on the table. This pose was previously
computed by the perception module (BlockLocalization).

• Type: Simple Action Server

• Topic: /pick

• Message type: ias msgs/Pick.action

17

1 ### goal definition

2 geometry_msgs/Pose block

3 ---

4 ### result definition

5 ---

6 ### feedback

7 # can be used as an optional progress indicator

8 # with values between 0 and 100

9 int32[] progress

Listing 3: Pick.action

4.4 Placing

The goal of this capability is to allow the robot to place blocks on a table.
For the placing action the arm needs to be moved to a configuration that

allows the gripper to place the block at the specified location. Once the arm has
moved the gripper to the right location the gripper has to be opened to release
the block. Once the block is released the arm needs to move back to the home
configuration.

CAUTION: Again, make sure your hand is close to the red emergency button
and ready to press it once the robot arm moves.

4.4.1 Integration

Placing should be again realized as an action server named “/place”. The goal
sent to the action server should be the location of free space on the table,
as provided by the perception module (FreeSpaceLocalization).

• Type: Simple Action Server

• Topic: /place

• Message type: ias msgs/Place.action

1 ### goal definition

2 geometry_msgs/PoseArray space

3 ---

4 ### result definition

5 geometry_msgs/Pose block

6 ---

7 ### feedback

8 # can be used as an optional progress indicator

9 # with values between 0 and 100

10 int32[] progress

Listing 4: Place.action

18

	Introduction
	Getting you started: Robot Setup
	The Big Picture
	Code Management

	Navigation + Reasoning
	Navigation
	Steps

	The Reasoning Modules: The System's Brain

	Perception
	Block Localization
	Integration

	The Depth Image
	Calibration
	Grasping the Block
	Table Detection

	Manipulation
	Overall Task Description
	Going to a Camera Overview Pose
	Integration

	Picking
	Integration

	Placing
	Integration

